3 - 6 Perpendiculars and Distance

the distance from a point to a line

The distance from a line to a point not on the line is the length of the segment perpendicular to the line from the point.

Ex: Draw the segment that represents the distance from P to AB.

Two lines are parallel if they are <u>equidistant</u>.

Theorem 3.9

In a plane, if two lines are equidistant from a third line, then the two lines are parallel to each other.

Find the distance between two parallel lines

$$y = -\frac{1}{3}x - 3(1)$$
 $y = -\frac{1}{3}x + \frac{1}{3}(m)$

Need to find equation of a line \perp to them... (p)

Y-intercept:
$$-3$$
 $(0,-3)$ $\downarrow q$ P

Slope: 3

Equation:
$$y = 3x - 3$$

Find second point of intersection

$$\begin{array}{c}
M & P \\
-\frac{1}{3}X + \frac{1}{3} = 3x - 3 \\
+\frac{1}{3}X + \frac{10}{3}X + \frac{10}{3}X \\
+\frac{10}{3} = \frac{10}{3}X \\
\frac{10}{3} = \frac{10}{3}X \\
X=1
\end{array}$$

Use distance formula and those two points

$$(0,-3) (1,0)$$

$$d = \sqrt{(0-1)^2 + (-3-0)^2}$$

$$= \sqrt{1+9}$$

$$= \sqrt{10} \approx 3.16$$

In Class Tomorrow:

3 - 6 WS